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This study developed an integrated energy management/gear-shifting strategy by using a bacterial foraging algorithm (BFA)
in an engine/motor hybrid powertrain with electric continuously variable transmission. A control-oriented vehicle model was
constructed on the Matlab/Simulink platform for further integration with developed control strategies. A baseline control strategy
with four modes was developed for comparison with the proposed BFA. The BFA was used with five bacterial populations to
search for the optimal gear ratio and power-split ratio for minimizing the cost: the equivalent fuel consumption. Three main
procedures were followed: chemotaxis, reproduction, and elimination-dispersal. After the vehicle model was integrated with the
vehicle control unit with the BFA, two driving patterns, the New European Driving Cycle and the Federal Test Procedure, were
used to evaluate the energy consumption improvement and equivalent fuel consumption compared with the baseline. The results
show that [18.35%, 21.77%] and [8.76%, 13.81%] were improved for the optimal energy management and integrated optimization
at the first and second driving cycles, respectively. Real-time platform designs and vehicle integration for a dynamometer test will
be investigated in the future.

1. Introduction

The hybridization of power sources, energy sources, and
system configurations for green vehicles has become amature
technology because of outstanding performance (long travel-
ing distance, energy recovery, superior acceleration, optimal
control, favorable fuel economy, and low or zero emission)
[1–4]. Engine/motor hybrid powertrains constitute the most
popular type because of the low level of modification from
vehicleswith traditional engines.Three configurations (serial,
parallel, and power-split or dual-mode) were developed and
studied [5]. Various types of advanced vehicle powertrains
have been developed to improve the energy usage including
electric continuously variable transmission (e-CVT) power-
split hybrid systems [6, 7]. Considering complexity and
system efficiency, this study chose parallel hybrid powertrains
for control strategy implementation. Because engine fuel

consumption was critical to overall system performance, an
e-CVT was equipped downstream of the engine to properly
shift the operation points to the efficient area.

For energy management (supervisory control) among
power (energy) sources of a vehicle control unit (VCU)
for a hybrid powertrain, rule-based control (defined as our
baseline control), theoretical control, and combined rule-
based/theoretical control are the three main categories of
control laws. For the rule-based control category, “if-else-
then” strategies were designed by investigating the perfor-
mance maps of key components (engine BSFC map and
motor efficiency map) [8]. Fuzzy-logic rules are another
type for intelligent energy management, especially for highly
nonlinear or complicated vehicle powertrains [9]. The ben-
efits of this category are fast rule designs and easy imple-
mentation for VCUs. However, managing complicated vehi-
cle systems with various control variables is difficult. For
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the theoretical analysis category, deterministic dynamic pro-
gramming (DDP) for the hybrid powertrain is regarded
as the “absolute” optimization in a preset scenario (or
driving cycle) [10]. A genetic algorithm (GA) is another
theoretical method for analyzing hybrid powertrain control
[11]. The benefit of this category is that it can be used to
solve complicated problems with several variables, and the
analyzed results are more convincing. However, the heavy
computational load limits this category for online control.
Furthermore, how offline optimal results are implemented
in online strategies is crucial. The control rules after a rule-
extraction procedure cannot guarantee optimization. For
the third category (combined rule-based/theoretical control)
analyzed optimal results can be directly implemented in the
VCU for vehicle control. With theories involved in control
laws, suboptimal output performance can be expected. The
first method is the equivalent consumption minimization
strategy [12]. The global search of the maximal (or minimal)
cost function derives the optimal control results. A set of
multidimensional tables can be implemented in the VCU
directly. Modified from DDP, another online optimization
method, stochastic dynamic programming, was used for
hybrid power distribution [13]. Applying the probability
distribution concept can make online control accessible and
reduce large computational load, which leads to real-time
computation.

Recently, many biologically inspired optimization algo-
rithms have been developed because of their highly efficient
computation, global optimization, and wide applications for
various industrial fields [14, 15]. Frequently used nature-
inspired optimization algorithms include GAs [16], particle
swarm optimization (PSO) [17], ant colony optimization [18],
differential evolution [19], and bacterial foraging algorithms
(BFAs) [20, 21]. The first BFA was proposed by Professor
Passino in 2002 and was inspired by the social foraging
behavior of Escherichia coli bacteria [20]. During the lifetime
of bacteria, they communicate with each other and compete
for food simultaneously. After some generations of evolution,
bacteria with poor foraging strategies either are eliminated
or develop improved foraging strategies. Because BFA uses
the intelligence of bionic bacteria; it demonstrates advantages
such as parallel search, ease of jumping out of local minima,
insensitivity to initial value, and high global optimization
ability. Recently, BFAs have been successfully applied to
numerous engineering problems such as power system sta-
bilization and control [21–24], vehicle routing [25], operation
optimization ofwind turbines [26], electric drives control [27,
28], robot control [29], power electronic control [30], fault
diagnosis [31], optimal arrangement of distributed generation
system [32], and energy management of hybrid electric
vehicles [33]. Comparing to the traditional approaches, the
applications using BFA can obtain the advantages in terms
of the high performance robustness and precision under the
dynamic changes of the system [28].

In [33], although a genetic-based BFA was proposed to
control the stored battery power of hybrid electric vehicles
to achieve higher fuel economy and lower pollutants, the
dynamic online control for practical usage must still be
verified. Different from [33], the online control for two

driving cycles, two BFA control variables, and new vehicle
types (e-CVT hybrid electric vehicles [HEVs]) has been
conducted. Thus far, few studies have used online BFAs to
directly optimize the energy management of hybrid electric
vehicles.

Compared to our past works, the most closed research
is [34], where the rule-based control, particle swarm opti-
mization, and equivalent consumption minimization strat-
egy were utilized for the energy management. The PSO
method, another biologically inspired optimization, can save
30+% equivalent fuel consumption for another HEV type. It
proves that either PSO or BFA in this research significantly
saves equivalent fuel for HEVs. However, this research has
one more variable for optimization. In another previous
work [35], the optimal control of integrated energy man-
agement/mode switch timing in a hybrid powertrain was
conducted.The offline global search algorithmwas developed
for the optimal power-split ratio and operation mode switch.
It saves 30+% energy for a new three-power-source HEV.

From the aforementioned studies, the main academic
and industrial contributions of this study are summarized as
follows: (1) The BFA procedures for solving two-dimensional
optimization problems were formulated. (2) The control-
oriented e-CVT HEV model was developed. (3) The per-
formance of three cases was compared: four-mode rule-
based control, traditional CVT HEVs, and e-CVTs. (4) A
reduction in energy usage and equivalent fuel consumption
was obtained. This study can be implemented in real hybrid
powertrains for positive effect of automotive industry in
the future. The remainder of this paper is organized as
follows: Section 2 describes the configuration of the proposed
powertrains with dynamic equations; Section 3 explains the
development of the four-mode rule-based control and the
BFA procedures for the optimization problem of the e-CVT
HEV; Section 4 presents a comparison of three control cases
and shows the improvements in energy management and
equivalent fuel consumption; and, finally, Section 5 concludes
this study and provides the academic and industrial contribu-
tions.

2. Powertrain and System Modeling

2.1. E-CVT Hybrid Powertrain Configuration. Figure 1 shows
a plot of the configuration of the e-CVT hybrid powertrain. A
standard driving scenario sends the demanded speed (𝑉𝑑(𝑡))
to the driver model. The demanded hybrid power (𝑃𝑑(𝑡)) is
calculated by comparing 𝑉𝑑(𝑡) and actual speed (𝑉𝑎(𝑡)) and
then is delivered to the VCU. Using 𝑃𝑑(𝑡), the transmission
rotational speed (𝑁𝑡(𝑡)), derived from 𝑉𝑎(𝑡), and the battery
state-of-charge (SOC𝑏), three control variables are calculated:
(1) engine torque (𝑇𝑒(𝑡)), (2) motor torque (𝑇𝑚(𝑡)), and (3)
the gear reduction ratio (rrCVT) for e-CVT. The combined
torque at the transmission (𝑇𝑡(𝑡)) accelerates or decelerates
the longitudinal vehicle equivalent mass to calculate 𝑉𝑎(𝑡).
The mode on/off switch for rule-based control is governed
by two electric-controlled clutches downstream of the e-CVT
and the traction motor. Note that the motor is regarded as
a generator if the battery charging power is necessary for
maintaining SOC balance.
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Figure 1: e-CVT engine/motor hybrid powertrain system with control.

2.2. System Modeling. Many research papers model the HEV
dynamics. Here, five main segments (subsystems and oper-
ation scenarios) are modeled for the control-oriented HEV
dynamics.

2.2.1. Driving Cycle and Driver Behavior. A driving cycle is
the standard testing scenario that can provide objective data
for performance evaluation. The demanded speed is only a
function of time: 𝑉𝑑 = 𝑉𝑑(𝑡). Driver behavior, which was not
the main focus of this research, can be set as a proportional-
integral (PI) controller with the vehicle speed error input
between 𝑉𝑑 and 𝑉𝑎 (Δ𝑉 ≡ 𝑉𝑑 − 𝑉𝑎). The demanded hybrid
power is determined using the following formula:

𝑃𝑑 (𝑡) = 𝐺pwr [𝐾𝑝 (Δ𝑉) + 𝐾𝐼 ∫
𝑡

0

(Δ𝑉) 𝑑𝑡] , (1)

where 𝐺pwr, 𝐾𝑝, and 𝐾𝐼 are the gain from the throttle (or
brake) in response to the demanded power, the proportional
gain of the throttle, and the integral gain of the throttle,
respectively. If 𝑃𝑑 < 0, the braking force that directly acts on
the vehicle mass (𝑚V) can be formulated as follows:

𝐹brk (𝑡) = 𝐺brk [𝐾𝑝Δ𝑉 + 𝐾𝐼 ∫
𝑡

0

(Δ𝑉) 𝑑𝑡] . (2)

2.2.2. Main Power Source: Internal Combustion Engine. A
two-dimensional brake specific fuel consumption (BSFC)
map represents engine performance, where engine speed
(𝑁𝑒) and engine torque (𝑇𝑒) are the 𝑥-axis and 𝑦-axis,

respectively. The BSFC (g/kW-hr) is thus expressed in the
following formula:

BSFC (𝑡) = BSFC (𝑁𝑒 (𝑡) , 𝑇𝑒 (𝑡)) . (3)
To evaluate the accumulated fuel usage and energy consump-
tion, the fuel consumption rate (g/s) is formulated from the
derived BSFC:

𝑚̇𝑒 (𝑡) = BSFC (𝑁𝑒 (𝑡) , 𝑇𝑒 (𝑡)) ×
𝑇𝑒 (𝑡)𝑁𝑒 (𝑡)

(3.6 × 106)
. (4)

2.2.3. Traction Motor and High-Power Lithium Battery.
Because of the quick response of motor dynamics compared
with vehicle mass dynamics, another two-dimensional effi-
ciency map with motor speed 𝑁𝑚(𝑡) and torque 𝑇𝑚(𝑡) is
expressed as follows:

𝜂𝑚 (𝑡) = 𝑓 (𝑇𝑚 (𝑡) ,𝑁𝑚 (𝑡)) . (5)

Note that we assume that the efficiencies for charge and
discharge conditions are the same. For the energy storage
device and electricity provider, a lithium battery was applied
in this research and can be expressed as an inner resistance
model [36]. The equivalent resistance for charge and dis-
charge (𝑅𝑏,chg and 𝑅𝑏,dchg) and the open circuit voltage (𝑉𝑏,oc)
are influenced by SOC𝑏 and battery temperature. To simplify
the problem, the temperature remains at a constant of 25∘C.
The battery current (𝐼𝑏) is derived from battery power (𝐼𝑏),
inner resistance (𝑅𝑏), and 𝑉𝑏,oc:

𝐼𝑏 (𝑡) =
(𝑉𝑏,oc (SOC𝑏 (𝑡)) − √𝑉2𝑏,oc (SOC (𝑡)) − 4𝑅𝑏 (𝑡) (SOC𝑏 (𝑡)) 𝑃𝑏 (𝑡))

2𝑅𝑏 (𝑡)
. (6)
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Note that 𝑅𝑏 = 𝑅𝑏,chg if 𝑃𝑏 < 0, whereas 𝑅𝑏 = 𝑅𝑏,dchg if
𝑃𝑏 ≥ 0. Note that 𝑃𝑏 for discharge (𝑃𝑏,dchg) and charge (𝑃𝑏,chg)
conditions can be expressed, separately, as follows:

𝑃𝑏,dchg (𝑡) =
𝑃𝑚 (𝑡)

𝜂𝑚,dchg
=
𝑇𝑚 (𝑡)𝑁𝑚 (𝑡)

𝜂𝑚,dchg
, (7)

𝑃𝑏,chg (𝑡) = 𝑃𝑚 (𝑡) × 𝜂𝑚,chg = 𝑇𝑚 (𝑡)𝑁𝑚 (𝑡) × 𝜂𝑚,chg. (8)

The first-order dynamics of the battery are governed by the
state 𝑥1 : SOC𝑏, which is formulated as follows:

𝑥1 = SOC𝑏 (𝑡) = SOC𝑏,init −
∫
𝑡

0
𝐼𝑏 (𝑡) 𝑑𝑡

𝑄𝑏
󳨀→

𝑥̇1 (𝑡) = 𝐼𝑏 (𝑡) ,

(9)

where SOC𝑏,init and 𝑄𝑏 are the initial SOC𝑏 and the electric
capacity, respectively.

2.2.4. Traditional CVT and e-CVT Systems. CVTs function as
an amplifier to properlymodify the output torque/speed from
the input torque/speed of power sources. Through CVTs,
the power sources are expected to work efficiently with the
operation points in the efficient zones. Traditional CVTs
mainly consist of a driving pulley, driven pulley, and rubber
belt or steel chain [37]. The rollers in the rotating driving
pulley push the moving flange by centrifugal force. Because
the length of the CVT belt is fixed, the moving flange of the
driven pulley overcomes the compression force of a torsional
spring. Both equivalent radiuses of the belt on the driving
and driven flanges form a reduction ratio.The reduction ratio
(rrCVT) and efficiency (𝜂CVT) are functions of the torque and
speed of the CVT output shaft:

rrCVT = rrCVT (𝑁CVT, 𝑇CVT) ,

𝜂CVT = 𝜂CVT (𝑁CVT, 𝑇CVT) ,
(10)

where𝑇𝑡 and𝑁𝑡 denote the torque and speed of the transmis-
sion, respectively. Therefore, the relationships of the torques
and speeds upstream (CVT) and downstream (transmission)
are expressed as follows:

𝑇𝑒 =
𝑇CVT

(𝜂CVTrrCVT)
, (11)

𝑁𝑒 = rrCVT𝑁𝑡. (12)

Note that from Figure 1, the rotational speeds upstream of
transmission, downstream of CVT, and of the motor shaft
are the same because they are directly interconnected (𝑁𝑡 =
𝑁CVT = 𝑁𝑚). For the e-CVT, the working principles are
similar except that the movements of the moving flanges
of the driving pulley and driven pulley are controlled by
two servo actuators. Therefore, rrCVT varies by sending the
control voltages to the actuator motors from the VCU.

2.2.5. Transmission and Vehicle Mass Dynamics. A trans-
mission downstream of the e-CVT and traction motor is

regarded as a pair of reduction gears with a fixed reduction
ratio, rr𝑡, that relates to 𝑇𝑡, wheel torque (𝑇𝑤), transmission
speed (𝑁𝑡), and wheel speed (𝑁𝑤), through the following
expression:

𝑇𝑤 (𝑡) = 𝑇𝑡 (𝑡) × rr𝑡 × 𝜂𝑡

= [𝑇𝑚 (𝑡) + 𝑇CVT (𝑡)] × rr𝑡 × 𝜂𝑡,
(13)

𝑁𝑡 (𝑡) = 𝑁𝑚 = 𝑁𝑤 × rr𝑡 =
𝑉V

𝑟𝑤
× rr𝑡, (14)

where 𝜂𝑡 is the efficiency of transmission and𝑉V and 𝑟𝑤 are the
vehicle speed and wheel radius, respectively. For longitudinal
vehicle mass dynamics, a first-order dynamic equation for
vehicle speed of the vehicle mass (𝑚V) is formulated as
follows:

𝑥̇2 (𝑡) = 𝑎V (𝑡) =
𝑑𝑉V (𝑡)

𝑑𝑡

=
[𝑇𝑤 (𝑡) /𝑟𝑤 − 𝐹brk (𝑡) − 𝐹wind (𝑡) − 𝐹roll]

𝑚V

=
[𝑇𝑤/𝑟𝑤 − 𝐹brk − 0.5𝐶𝑑𝜌𝐴𝑓𝑉V

2
− 𝜇𝑚V𝑔]

𝑚V
󳨀→

𝑥2 ≡ 𝑉V,

(15)

where 𝐹brk, 𝐹wind, and 𝐹roll are the braking force, wind
force, and rolling resistance. The braking force is referred
to as (2). The parameters 𝐶𝑑, 𝐴𝑓, 𝜌, and 𝜇 denote the air
drag coefficient, vehicle frontal area, air density, and rolling
resistance coefficient, respectively.

3. Energy Management/Gear-Shifting
Control Strategies

3.1. Baseline Control Strategy with Four Modes. To compare
the traditional rule-based control with the BFA optimization,
an if-else-then control law was designed based on engineer-
ing intuition. It consists of four modes: system ready, electric
vehicle (EV), engine only, and hybrid mode. Without any
power requirement (no pedal input), the system is in mode 1.
Mode 2 (EV) is mainly switched on at low rotational (vehicle)
speeds because of higher traction torque. To maintain the
cruising mileage, mode 3 activates the engine only when the
speed further increases. At higher rotational speeds, mode 4
operates the engine and motor with a fixed power-split ratio
(𝑇𝑚 :𝑇𝑒 = 7 : 3) to achieve higher output performance (higher
output torque and power). Table 1 shows the conditions and
actions of the four modes.

3.2. Multidimensional Control Using BFA

3.2.1. Optimized Control Variables and Relationships of Power
Flows. The definitions of designed control variables are for-
mulated. The power-split ratio, 𝛼, is the first control variable
(𝑢1) for energy management, which is defined as the CVT
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Table 1: Four-mode rule-based strategy.

Mode Condition Action
(1) System ready 𝑃𝑑 = 0 (𝑇𝑑 = 0) 𝑇𝑚 = 0, 𝑇𝑒 = 0
(2) EV 𝑇𝑑 > 0 & 𝑁𝑒 < 2400 𝑇

𝑚
= 𝑇
𝑑
, 𝑇
𝑒
= 0

(3) Engine only 𝑇𝑑 > 0 & 1500 ≤ 𝑁𝑒 < 3200 𝑇𝑚 = 0, 𝑇𝑒 = 𝑇𝑑
(4) Hybrid mode 𝑇𝑑 > 0 & 𝑁𝑒 ≥ 2200

𝑇𝑚 = 0.7𝑇𝑑,
𝑇𝑒 = 0.3𝑇𝑑

output power divided by the demanded transmission input
power (Figure 1):

𝛼 = 𝑢1 ≡
𝑃CVT
𝑃𝑑

=
𝑇CVT𝑁CVT
𝑇𝑑𝑁𝑡

=
𝑇𝑒rrCVT𝜂CVT

𝑇𝑑
. (16)

Note that rrCVT is the second control parameter (𝑢2) for the
e-CVT case.Therefore, theVCU commands for𝑇𝑒 and𝑇𝑚 are
calculated as follows:

𝑇𝑒 = 𝛼 ×
𝑃𝑑

(𝑁𝑡rrCVT𝜂CVT)
= 𝛼 ×

𝑇𝑑

(rrCVT𝜂CVT)

=
𝑢1𝑇𝑑

(𝑢2𝜂CVT)
,

(17)

𝑇𝑚 =
𝑃𝑚

𝑁𝑚
= (1 − 𝛼) ×

𝑃𝑑

𝑁𝑡
= (1 − 𝑢1) ×

𝑃𝑑

𝑁𝑡
. (18)

Investigation of the value of 𝛼, the operation modes, and the
power flow, and their fuel consumption, according to (1) to
(18), yields the following results.

(1) 𝛼 = 0 (EV Mode). No engine fuel rate is consumed
in this case. The battery power is directly calculated from
𝑃𝑑 according to (1). The variables 𝑁𝑚 and 𝑇𝑚 in 𝜂𝑚 are
calculated from (14) and (18), respectively. Therefore, two
required variables for equivalent fuel consumptions can be
calculated as

𝑚̇𝑒 = 0;

𝑃𝑏 =
𝑃𝑑

𝜂𝑚 (𝑁𝑚, 𝑇𝑚)
.

(19)

(2) 0 < 𝛼 < 1 (Hybrid Mode). According to (4), the engine
mass flow rate is calculated by𝑁𝑒(𝑡) and 𝑇𝑒(𝑡), which can be
derived from (11) and (17), respectively. The battery power is
determined using (18):

𝑚̇𝑒 (𝑡) = BSFC (𝑁𝑒 (𝑡) , 𝑇𝑒 (𝑡)) ×
𝑇𝑒 (𝑡)𝑁𝑒 (𝑡)

(3.6 × 106)
;

𝑃𝑏,dchg =
(1 − 𝛼) 𝑃𝑑

𝜂𝑚 (𝑁𝑚, 𝑇𝑚)
.

(20)

(3) 𝛼 = 1 (Engine Only Mode). The battery power is 0, and all
propulsion power is from the engine.

𝑚̇𝑒 (𝑡) = BSFC (𝑁𝑒 (𝑡) , 𝑇𝑒 (𝑡)) ×
𝑇𝑒 (𝑡)𝑁𝑒 (𝑡)

(3.6 × 106)
;

𝑃𝑏 = 0.

(21)

(4) 𝛼 > 1 (Engine Generation Mode). The engine alone drives
the vehicle, and it charges the battery using the motor as a
generator.

𝑚̇𝑒 (𝑡) = BSFC (𝑁𝑒 (𝑡) , 𝑇𝑒 (𝑡)) ×
𝑇𝑒 (𝑡)𝑁𝑒 (𝑡)

(3.6 × 106)
;

𝑃𝑏,chg = (1 − 𝛼) 𝑃𝑑 × 𝜂𝑚 (𝑁𝑚, 𝑇𝑚) .

(22)

The power flow equations are similar to (20). However,
according to (8) instead of (7), the expression of negative
battery power ((1 − 𝛼) < 0) is different from that in (20).

3.2.2. BFA Control. The scheme of this study is illustrated in
Figure 2. The three main segments are the BFA optimization,
the controller, and the controlled plant. The three inputs of
the BFA optimization are 𝑉𝑎, SOC𝑏, and 𝑃𝑑 feedback from
the plant and the controller.The for-loop-structural program
with the mechanisms of elimination-dispersal, reproduction,
and chemotaxis is used to derive the two optimal control
parameters,𝛼 and rrCVT, within a time step.These parameters
were sent to the controller, which consists of two parts. Driver
behavior is regarded as a PI controller in determining 𝑃𝑑.
The VCU is responsible for calculating 𝑇𝑒 and 𝑇𝑚 from 𝑃𝑑,
𝛼, and rrCVT, as described in Section 3.1, under physical
limitations (such as engine maximal speed and torque, and
maximal and minimal reduction ratio). The torque together
with the optimal rrCVT was delivered to the vehicle dynamics
to evaluate the system/subsystem performance𝑉𝑎 and SOC𝑏.
This information is then sent to the BFA optimization for the
optimal control in the next step.

3.2.3. BFA Procedure on Energy Management/Gear-Shifting
Optimization. To solve the optimal problem of the integrated
energy management/gear shifting in an e-CVT hybrid elec-
tric powertrain, the BFA was adopted to search the power-
split ratio, 𝛼, and reduction ratio, rrCVT, for minimizing
equivalent fuel consumption. A BFA algorithm comprises
three principal procedures: chemotaxis, reproduction, and
elimination-dispersal [20]. A flowchart of the BFA algorithm
is shown in Figure 3. For a search space with 𝑑 dimensions,
which is also the number of elements within a bacterium
vector 𝜃, the following parameters of the BFA algorithm are
initialized first: the number of bacteria in the population
is 𝑁𝑝, the number of chemotactic steps is 𝑁𝑐, the number
of swim or tumble actions in a chemotactic step is 𝑁𝑠, the
number of reproduction steps is 𝑁𝑟, and the number of
elimination-dispersal steps is𝑁𝑒. The procedures of the BFA
are introduced as follows.
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Figure 2: Energy management/gear-shifting optimization of BFA.

(1) Chemotactic Loop. During the chemotactic loop process,
the bacteria climb the nutrient concentration and avoid nox-
ious substances, instead of searching for neutral media [21].
The bacterium performs tumble or swim actions followed by
a tumble action. For each bacterium, the new position after a
tumble action can be represented by

𝜃𝑟 (𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑟 (𝑗, 𝑘, 𝑙) + 𝐶 (𝑟) 𝜙 (𝑟) , (23)

where 𝜃𝑟(𝑗, 𝑘, 𝑙) is the position of the 𝑟th bacterium in the
𝑗th chemotactic step in the 𝑘th reproduction and the 𝑙th
elimination-dispersal loops; 𝐶 is the step size of each moving
behavior; 𝜙(𝑟) is the random direction of a tumble action,
which is defined as

𝜙 (𝑟) =
Δ (𝑟)

√Δ𝑇 (𝑟) Δ (𝑟)
, (24)

where Δ is a random step on [−1, 1]. After the bacterium
completes a tumble action, the bacterium performs a swim
action (i.e., continuing to move in the same direction), while
the fitness value, as shown in (25), is improved. Otherwise,
the bacteriumperforms the tumble again, searching for a new
moving direction. The fitness function is modified from [34]
as follows:

FIT = 1

𝑚̇eq

=
1

[𝑚̇𝑒 (𝑇𝑒, 𝑁𝑒) + 𝑃𝑏/ (3.6 × 10
6) × BSFC × 𝑃 (SOC𝑏)]

,

(25)

where 𝑃(SOC𝑏) is a penalty factor related to the battery SOC.
When the SOC value is high, 𝑃(SOC𝑏) decreases to increase

the electricity usage and vice versa.This can balance the SOC
throughout the entire driving cycle. Moreover, the variable
BSFC is used to perform the unit transformation from kWh
to g. The physical meaning of FIT is the inverse of the
equivalent fuel, which is the summation of real engine fuel
consumption and the equivalent “battery fuel” consumption
(modified from the concept of [12]).

(2) Reproduction Loop. After 𝑁𝑐 chemotactic steps are com-
pleted, reproduction is carried out. First, the fitness values of
all the bacteria are sorted in ascending order. Subsequently,
bacteria that have fitness values in the lower half die, and the
remaining bacteria split into two bacteria that are placed in
the same location. This keeps the population size constant.

(3) Elimination-Dispersal Loop. After 𝑁𝑟 reproduction steps
are completed, bacteria are eliminated and dispersed to a
new location in the search space if a random probability 𝑃𝑟
is higher than a predefined threshold 𝑃𝑒. In that case, it is
helpful to jump out of the local optimum and achieve the
global optimum.

4. Simulation Results and Discussion

4.1. Simulator and Settings. The e-CVT HEV simulator was
constructed on the Matlab/Simulink platform. The program
structure is shown in Figure 4.The program is separated into
four segments.TheMatlab data m-file stores vehicle parame-
ters such as the engine andmotor performance maps, battery
measured data, vehicle information, and driving cycle data.
An S-function coded the BFA optimization with a cost (FIT
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Figure 3: BFA procedure for solving optimal problem.

function) function, whereas the data file provided informa-
tion for calculation. The Simulink program constructed the
vehicle dynamics with the subsystems described in Section 2.
With the control inputs described in Section 3 to the model,
the simulation results can be output. The parameters of
the vehicle model were input from the data file as well. The
plot m-file finally draws the simulation results for per-
formance analysis. For simulation, the numerical method
used was the Runge–Kutta method. Table 2 lists the vehicle

parameters and system settings; the parameter values for the
BFA described in Section 3 are listed in Table 3.

4.2. Comparison of Baseline, Optimal Energy Management,
and Integrated Control Cases

4.2.1. BFA Simulation Results. This part demonstrates the
detailed simulation results of the BFA described in Sec-
tion 3.2.3. To show the evolutions of the bacteria using
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Figure 4: E-CVT HEV simulator on Matlab/Simulink platform.

Table 2: Parameter values of targeted vehicle model.

Parameter Value
𝐺𝑡𝑞 400
𝐺brk 2000
𝐾𝑝 0.5
𝐾𝐼 0.2
rr𝑡 4.0
𝜂
𝑡

90%
𝐶𝑑 0.335
𝐴𝑓 2m2

𝜌 1.225 kg/m3

𝜇 0.009
𝑚V 1986 kg
𝑔 9.81m/s2

𝑟
𝑤

0.282m
BSFC 295 g/kW-hr
𝑄𝑏 25A-h

the BFA, the movements of the first five bacteria in the
population at the 15th second during the New European
Driving Cycle (NEDC) for optimal energy management
and optimal energy management/gear-shifting controls are
shown in Figures 5 and 6, respectively. In the evolutions,
all the bacteria have distinct and random initial positions.
According to the optimal energy management via the BFA as
shown in Figure 5, one can observe that the bacteria perform
tumble and swim actions to search for the optimal power-
split ratio, 𝛼, individually. The effectiveness of the BFA is
demonstrated by the gradual increase in the fitness function
during the optimization process. After the 11th iteration, the

Table 3: Parameter values of BFA control.

Parameter Value
𝑁𝑝 10
𝑁
𝑒

30
𝑁𝑟 1
𝑁𝑐 1
𝑁𝑠 1
𝑑 1 or 2
𝑐 0.01
𝑃𝑒 0.8
Searching space of 𝛼 [0 1]
Searching space of rrCVT [0.2 2.4]

fitness function was gradually stable and the optimal power-
split ratio was found. By contrast, the power-split ratio 𝛼
and reduction ratio rrCVT were optimized simultaneously
in the optimal energy management/gear-shifting control, as
shown in Figure 6. In Figure 6, the initial random points
and destination points of bacteria are symbolized by circle
and star marks, respectively. The two-dimensional trajectory
clearly shows that the bacteria moved and competed in
the searching space to find the optimal solution. Of the
bacteria 𝜃1, 𝜃2, 𝜃3, and 𝜃5, all found the neighboring optimal
solutions except bacterium 𝜃4. Similarly, the fitness value
during the optimization process was increased gradually.

4.2.2. Output Performance in Driving Patterns. To evaluate
the system performance and testing scenarios, driving cycles
were selected in advance. Figure 7 presents the two typical
driving cycles for the simulation.The first is the NEDC (New
European Driving Cycle), whereas the second is the FTP-72
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Figure 6: BFA results of optimal energy management/gear shifting
at the 15th sampling time.

(Federal Test Procedure) driving cycle. For the NEDC, one
cycle is 1180 seconds and the traveling distance is 11.0 km.
Many constant-speed periods can be tested. FTP-72 is a
city driving program that takes 1369 seconds and has many
acceleration/deceleration periods. The traveling distance is
12.07 km.

For the NEDC simulation, three cases were investigated,
separately. For rule-based control, Figure 8(a) shows that
the vehicle speed tracking was favorable (within ±1.0 km);
therefore, the following simulation results were convincing.
As shown in Figure 8(b), before the 800th second, the motor
provided the whole torque (power) at the low-speed period,
(mode 2) according to Table 1. Only at medium rotational
(vehicle) speed did the engine take charge of the driving

power to extend the drivingmileage (mode 3). After the 800th
second, the engine covered most of the operation because
of the high required vehicle speed. After the 1000th second,
the higher speed led to the mode switching to the hybrid
mode (mode 4), where the engine and the motor drove the
vehicle simultaneously. The gear ratio of the traditional CVT
showed that it varied from 2.4 to around 0.85, and the profile
exhibited an opposite tendency to that of the vehicle speed.
The tendency was to switch the engine operation speed in the
efficient area. For the battery SOC, after one cycle, the value
went from the initial 50% to 36.8%. The SOC difference was
13.2%. Figure 9 exhibits the operation points of dual power
sources. In Figure 9(a), it shows that although the engine
operated in a reasonable operation region, many operation
points were still located in inefficient areas (i.e., 𝑇𝑒 ≤ 60N⋅m
→ BSFC < 350 g/kW-hr). Moreover, because of the low-
speed (or low-power) operation ofmode 2 (motor only),most
motor operation points were located in an inefficiency area
below 85%, as shown in Figure 9(b).

For optimal energy management control, compared with
Figure 8, Figure 10(a) still shows favorable vehicle speed
tracking. However, the torque distribution depicted in Fig-
ure 10 is quite different. Despite being in a low-vehicle-speed
(low power) area, the motor controlled the main output
power and the engine still assisted the motor in reserving the
battery energy. In the high-power region, the engine became
the main power source to propel the vehicle because the
BSFC in the high-torque region was low (it had high fuel
efficiency). Especially after the 800th second, the motor was
regarded as a power-assist power device. According to the
definition in (16), the profile of 𝛼(𝑡) shown in Figure 10(c)
increased as the power of the engine increased. Equations
(17) and (18) are used to determine the torque commands of
dual power sources. The gear reduction ratio of the passive
CVT showed similar variation to that of the rule-based case.
Because the engine operated with more time, the battery
SOC dropped from 50% to 42.4%; hence, the SOC difference
after one cycle was 7.6%. As shown in Figure 11, more
engine operation points concentrated in the the region at
BSFC ≥ 350 g/kW-hr. Although the motor operation points
were still in an inefficient area for torque (power) assistance,
the number of operation points was lower than that in the
rule-based case.We expected amore favorable equivalent fuel
value from (25) compared with that in the rule-based case.

For optimal energy management/gear-shifting control
(integrated control), the torque distribution in Figure 12 was
different from the two previous cases.The operation time and
power of the engine were longer and larger, respectively. The
motor acted only as an assistive power source that provided
the compensated power that allowed the engine to operate
efficiently. The profile of the first control variable 𝑢1 = 𝛼(𝑡)

shows that the 𝛼 values are, on average, higher than those
in the optimal energy management case even at low speed
or in low-power areas. Notably, for the active e-CVT, the
gear ratio (𝑢2 = rrCVT(𝑡)) was shifted to a comparatively
low value (approximately 0.3–0.4) most of the time, meaning
that the engine torque increased while the engine speed
decreased. Similar to the optimal energy management case,
the SOC drops from 50% to 39.1% (10.9% SOC difference),
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Figure 7: Two standard driving cycles: (a) NEDC and (b) FTP-72.
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Figure 8: NEDC with rule-based control: driving profile, torque, mode, CVT gear ratio, and battery SOC (from (a)–(e)).

which causes lower electric loss from the battery compared
with the rule-based case. Figure 13(a) shows that the engine
operates with as high value as possible to decrease the BSFC
value. Hence, the fuel economy was better that the two
previous cases. In this case, more operation points of the
motor were located in the efficient area (medium-speed,
medium-torque), where the efficiency was above 85% (see
Figure 13(b)).

For the cases in the FTP-72 driving cycle, a trend similar
to those in the NEDC is shown. Because of the reasonable
paper length, the simulation results of equivalent fuel con-
sumption are provided in Section 4.3.

4.3. Fuel Economy Improvement. This section discusses the
improvement in fuel economy during operation under rule-
based, optimal energy management, and optimal energy
management/gear-shifting control. Figure 14(a) shows the

accumulated equivalent fuel consumption (𝑚eq) according
to the fitness function expressed in (25) during the NEDC;
that is, 𝑚eq = ∫

𝑡𝑓

0
𝑚̇eq(𝑡)𝑑𝑡. At the beginning of the cycles,

three cases had similar 𝑚eq. However, as time elapsed, the
differences in accumulated 𝑚eq of the three cases increased.
In the high-vehicle-speed (high-power) region after the
800th second, the difference in 𝑚eq increases. Similarly, in
Figure 14(b), larger differences of 𝑚eq occur for these three
cases as time elapsed. Comparing above three cases, the
optimal energy management/gear shifting demonstrated the
highest performance.

Table 4 presents a summary of the equivalent fuel
improvement during the two driving cycles. For the NEDC
cycle, the equivalent fuel consumption (g) for the rule-
based case, optimal energy management, and optimal
energy management/gear shifting were as follows: [1017.10,
830.50, 795.66]. For the FTP-72 cycle, the results were as
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Figure 10: NEDC with optimal energy management: driving profile, torque, mode, CVT gear ratio, and battery SOC.

Table 4: Equivalent fuel improvement during two driving cycles.

Equivalent fuel consumption (g) Fuel improvement compared to baseline case (%)
Driving cycles NEDC FTP-72 NEDC FTP-72
Rule-based control 1017.10 1022.10 — —
Opt. energy management 830.50 937.97 18.35 8.23
Opt. energy management/gear shifting 795.66 888.55 21.77 13.07
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Figure 11: Operation points of (a) engine and (b) motor in the NEDC with optimal energy management.
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Figure 13: Operation points of (a) engine and (b) motor in the NEDC with optimal energy management/gear shifting.
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Figure 14: Accumulated equivalent fuel consumption of three cases in (a) NEDC and (b) FTP-72 driving cycle.

follows: [1129.3, 1030.4, 973.4]. According to the data, the
fuel improvement compared with the rule-based control
for optimal energy management and optimal energy
management/gear shifting was [18.35%, 21.77%] and
[8.76%, 13.81%] for the two driving cycles. The contribution
of optimal gear shifting using the BFA for both cycles was
[3.32%, 5.05] ([(21.77–18.35)%, (13.81–8.76)%]).

The results prove that the BFA largely reduces the equiv-
alent fuel consumption of the e-CVT hybrid powertrains
compared with the rule-based case. Hardware-in-the-loop
(HIL) real-time simulation and real vehicle verification will
be conducted in the future.

5. Conclusion

This study developed an integrated energy management/
gear-shifting strategy for e-CVT HEVs by using BFA opti-
mization. The industrial and academic contributions are
summarized as follows:

(1) The three steps of BFA for hybrid energy manage-
ment and CVT control: a three-input (rotational
speed, battery SOC, and demanded power) and two-
output (power-split ratio and CVT gear ratio) BFA
approach was constructed. The three main steps are
elimination-dispersal, reproduction, and chemotaxis
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with a nested for-loop-structural program. The cost
function (nutrient concentration) of equivalent fuel
consumptionwas set.Thebacterial populationwas set
at five.

(2) Control-oriented e-CVT HEV model: five major
Simulink blocks (the driving pattern and driver
behavior, engine and traction motor, lithium battery
set, e-CVT, and transmission and vehicle dynamics)
were constructed. With integration of the BFA S-
function and two m files (data and plot), the simu-
lation was completed.

(3) Equivalent fuel improvement: three-case, four-mode,
and rule-based control; optimal energy management;
and optimal energy management/gear-shifting opti-
mization were compared. With two assigned driving
cycles, the improvements in equivalent fuel con-
sumption are [18.35%, 21.77%] for the NEDC and
[8.76%, 13.81%] FTP-72 cycle. This verifies that the
BFA significantly reduces the consumed energy of e-
CVT hybrid powertrains.

On a VCU design platform, an HIL environment with real-
time simulation will be investigated in the future. A real
vehicle integration and dynamometer test will be conducted
following the HIL simulation.

Nomenclature

𝐴𝑓: Area, m2
BSFC: Brake specific fuel consumption, g/kW-h
𝐶: Step size of each moving behavior
𝐹: Force, N
FIT: Fitness function
𝐺: Gain
𝐼: Current, A
𝑚: Mass, g
𝑚̇: Mass flow rate, g/s
𝑁: Rotational speed, rpm, or number
𝑃: Power, W
𝑄𝑏: Electric capacity, Ah
𝑅: Resistance, Ω
rr: Reduction ratio
SOC: State-of-charge
𝑇: Torque, N-m
𝑡: Time, sec.
𝑉: Vehicle speed, kph, or voltage, V
𝜃: Position
𝛼: Power-split ratio
𝜂: Efficiency, %
𝜌: Air density, kg/m3
𝜇: Rolling resistance
𝜙: Random direction.

Subscripts
𝑎: Actual
𝑏: Battery
brk: Brake
𝑐: Chemotactic step

chg: Charge
CVT: Continuously variable transmission
𝑑: Demand
dchg: Discharge
𝑒: Engine or elimination-dispersal step
𝐼: Integral
𝑚: Motor
oc: Open circuit
𝑝: Proportional or population
pwr: Power
𝑟: Reproduction step
𝑠: Swim or tumble actions
𝑡: Transmission
V: Vehicle
𝑤: Wheel.
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